Indian Journal of Endocrine Surgery and Research

Register      Login

VOLUME 16 , ISSUE 1 ( Jan-Jun, 2021 ) > List of Articles

REVIEW ARTICLE

Succinate Dehydrogenase Mutation and Paraganglioma Syndromes: A Review Article

Surabhi Garg, Loreno Enny, Upander Kumar, Nancy Raja, Pooja Ramakant, Kul Ranjan Singh

Keywords : Paraganglioma, Pheochromocytoma, Succinate dehydrogenase, Endocrine surgery

Citation Information : Garg S, Enny L, Kumar U, Raja N, Ramakant P, Singh K R. Succinate Dehydrogenase Mutation and Paraganglioma Syndromes: A Review Article. 2021; 16 (1):11-16.

DOI: 10.5005/jp-journals-10088-11162

License: CC BY-NC 4.0

Published Online: 26-06-2021

Copyright Statement:  © The Author(s). 2021 


Abstract

Pheochromocytomas and paragangliomas are rare tumours of both sympathetic and parasympathetic origin. Pheochromocytomas are derived from the adrenal medulla whereas paraganglioma arise from extra adrenal sympathetic and parasympathetic tissues. Between a quarter to one-third of pheochromocytomas-paragangliomas have familial aetiology which are heterogenous and include syndromes like on Hippel-Lindau (VHL), multiple endocrine neoplasia type 2 (MEN2), neurofibromatosis type 1 (NF1) and succinate dehydrogenase (SDH) mutation-related tumours. SDH is a mitochondrial complex involved in both Kreb's cycle and electron transport chain consisting of different subunits (A-D). Different mutations in various sub-units SDH leads to significant phenotypic heterogeneity, hence has been classified as different paraganglioma syndromes. Herein we review the pathogenesis, inheritance, clinical presentation, diagnosis and management of SDH related paragangliomas.


PDF Share
  1. Baysal BE, Ferrell RE, Willett-Brozick JE, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000;287(5454):848–851. DOI: 10.1126/science.287.5454.848.
  2. Boedeker CC. Paragangliomas and paraganglioma syndromes. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2012;10:3. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3341580/
  3. Chase WH. Familial and bilateral tumours of the carotid body. J Pathol Bacteriol 1933;36(1):1–12. DOI: 10.1002/path.1700360102.
  4. Van Der Mey AGL, Maaswinkel-Mooy PD, Cornelisse CT, et al. Genomic imprinting in hereditary glomus tumours: evidence for new genetic theory. Lancet 1989;334(8675):1291–1294. DOI: 10.1016/s0140-6736(89)91908-9.
  5. Mutations in SDHD, a Mitochondrial Complex II Gene, in Hereditary Paraganglioma Science [Internet]. [cited 2021 Mar 26]. Available from: https://science.sciencemag.org/content/287/5454/848
  6. Gimm O, Armanios M, Dziema H, et al. Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Res 2000;60(24):6822–6825. Available at: https://pubmed.ncbi.nlm.nih.gov/11156372/
  7. Niemann S, Müller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 2000;26(3):268–270. DOI: 10.1038/81551.
  8. Astuti D, Latif F, Dallol A, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001;69(1):49–54. DOI: 10.1086/321282.
  9. Hao H-X, Khalimonchuk O, Schraders M, et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009;325(5944):1139–1142. DOI: 10.1126/science.1175689.
  10. Bourgeron T, Rustin P, Chretien D, et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet 1995;11(2):144–149. DOI: 10.1038/ng1095-144.
  11. Yankovskaya V, Horsefield R, Törnroth S, et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 2003;299(5607):700–704. DOI: 10.1126/science.1079605.
  12. Baysal BE, Maher ER. 15 years of paraganglioma: genetics and mechanism of pheochromocytoma–paraganglioma syndromes characterized by germline SDHB and SDHD mutations. Endocr Relat Cancer 2015;22(4):T71–T82. DOI: 10.1530/ERC-15-0226.
  13. Gossage L, Eisen T, Maher ER. VHL, the story of a tumour suppressor gene. Nat Rev Cancer 2015;15(1):55–64. DOI: 10.1038/nrc3844.
  14. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell 2012;148(3):399–408. DOI: 10.1016/j.cell.2012.01.021.
  15. Dahia PLM, Hao K, Rogus J, et al. Novel pheochromocytoma susceptibility loci identified by integrative genomics. Cancer Res 2005;65(21):9651–9658. DOI: 10.1158/0008-5472.CAN-05-1427.
  16. Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 2005;7(1):77–85. DOI: 10.1016/j.ccr.2004.11.022.
  17. Smith EH, Janknecht R, Maher LJ. Succinate inhibition of α-ketoglutarate-dependent enzymes in a yeast model of paraganglioma. Hum Mol Genet 2007;16:3136–3148. Available at: https://academic.oup.com/hmg/article/16/24/3136/698098
  18. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Available at: http://genesdev.cshlp.org/content/26/12/1326
  19. Letouzé E, Martinelli C, Loriot C, et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 2013;23(6):739–52. DOI: 10.1016/j.ccr.2013.04.018.
  20. Lee S, Nakamura E, Yang H, et al. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 2005;8(2):155–167. DOI: 10.1016/j.ccr.2005.06.015.
  21. Pigny P, Vincent A, Cardot Bauters C, et al. Paraganglioma after maternal transmission of a succinate dehydrogenase gene mutation. J Clin Endocrinol Metab 2008;93(5):1609–1615. DOI: 10.1210/jc.2007-1989.
  22. Eisenhofer G, Lenders JWM, Timmers H, et al. Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. Clin Chem 2011;57(3):411–420. DOI: 10.1373/clinchem.2010.153320.
  23. Fishbein L, Nathanson KL. Pheochromocytoma and paraganglioma: understanding the complexities of the genetic background. Cancer Genet 2012;205(1–2):1–11. DOI: 10.1016/j.cancergen.2012.01.009.
  24. Burnichon N, Rohmer V, Amar L, et al. The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas. J Clin Endocrinol Metab 2009;94(8):2817–2827. DOI: 10.1210/jc.2008-2504.
  25. Horváth R, Abicht A, Holinski-Feder E, et al. Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA). J Neurol Neurosurg Psychiatry 2006;77(1):74–76. DOI: 10.1136/jnnp.2005.067041.
  26. SDHA is a tumor suppressor gene causing paraganglioma. Available at: https://pubmed.ncbi.nlm.nih.gov/20484225/
  27. Korpershoek E, Favier J, Gaal J, et al. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab 2011;96(9):E1472–E1476. DOI: 10.1210/jc.2011-1043.
  28. Welander J, Söderkvist P, Gimm O. Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer 2011;18(6):R253. Available at: https://erc.bioscientifica.com/view/journals/erc/18/6/R253.xml
  29. SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res. Available at: https://clincancerres.aacrjournals.org/content/17/2/247
  30. Astuti D, Latif F, Dallol A, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001;69(1):49–54. DOI: 10.1086/321282.
  31. Neumann HPH. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 2004;292(8):943. DOI: 10.1001/jama.292.8.943.
  32. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Available at: https://pubmed.ncbi.nlm.nih.gov/19802898/
  33. Vanharanta S, Buchta M, McWhinney SR, et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet 2004;74(1):153–159. DOI: 10.1086/381054.
  34. The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney-Stratakis syndrome): molecular genetics and clinical implications. Available at: https://pubmed.ncbi.nlm.nih.gov/19522824/
  35. Mannelli M, Castellano M, Schiavi F, et al. Clinically guided genetic screening in a large cohort of Italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J Clin Endocrinol Metab 2009;94(5):1541–1547. DOI: 10.1210/jc.2008-2419.
  36. Peczkowska M, Cascon A, Prejbisz A, et al. Extra-adrenal and adrenal pheochromocytomas associated with a germline SDHC mutation. Nat Clin Pract Endocrinol Metab 2008;4(2):111–115. DOI: 10.1038/ncpendmet0726.
  37. Taschner PE, Jansen JC, Baysal BE, et al. Nearly all hereditary paragangliomas in the Netherlands are caused by two founder mutations in the SDHD gene. Genes Chromosomes Cancer 2001;31(3):274–281. DOI: 10.1002/gcc.1144.
  38. Her YF, Maher LJ. Succinate dehydrogenase loss in familial paraganglioma: biochemistry, genetics, and epigenetics. Int J Endocrinol 2015;2015:e296167. DOI: 10.1155/2015/296167.
  39. Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Available at: https://pubmed.ncbi.nlm.nih.gov/12811540/
  40. Immunohistochemical loss of succinate dehydrogenase subunit. Am J Surg Pathol. Available at: https://journals.lww.com/ajsp/Abstract/2013/02000/Immunohistochemical_Loss_of_Succinate.10.aspx
  41. Clinical and molecular genetics of patients with the Carney–Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet. Available at: https://www.nature.com/articles/5201904
  42. Timmers HJLM, Pacak K, Huynh TT, et al. Biochemically silent abdominal paragangliomas in patients with mutations in the succinate dehydrogenase subunit B gene. J Clin Endocrinol Metab 2008;93(12):4826–4832. DOI: 10.1210/jc.2008-1093.
  43. Pacak K, Eisenhofer G, Ahlman H, et al. Pheochromocytoma: recommendations for clinical practice from the first international symposium. Nat Clin Pract Endocrinol Metab 2007;3(2):92–102. DOI: 10.1038/ncpendmet0396.
  44. Timmers HJLM, Kozupa A, Eisenhofer G, et al. Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas. J Clin Endocrinol Metab 2007;92(3):779–786. DOI: 10.1210/jc.2006-2315.
  45. Niemann U, Hiller W, Behrend M. 25 years experience of the surgical treatment of phaeochromocytoma. Eur J Surg 2002;168(12):716–719. DOI: 10.1080/00000000000000009.
  46. Kantorovich V, King KS, Pacak K. SDH-related pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2010;24(3):415–424. DOI: 10.1016/j.beem.2010.04.001.
  47. Ilanchezhian M, Jha A, Pacak K, et al. Emerging treatments for advanced/metastatic pheochromocytoma and paraganglioma. Curr Treat Options Oncol 2020;21(11):85. DOI: 10.1007/s11864-020-00787-z
  48. Eisenhofer G, Bornstein SR, Brouwers FM, et al. Malignant pheochromocytoma: current status and initiatives for future progress. Endocr Relat Cancer 2004;11(3):423–436. DOI: 10.1677/erc.1.00829.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.